1. **Rearrange the equation:**
Divide both sides by (2xy + x²) and (3y² + 2xy) to separate the variables:
(dy/dx) / (3y² + 2xy) = 1 / (2xy + x²)
2. **Simplify:**
Factor out y and x from the denominators:
(dy/dx) / [y(3y + 2x)] = 1 / [x(2y + x)]
3. **Integrate both sides:**
∫ (1/[y(3y + 2x)]) dy = ∫ (1/[x(2y + x)]) dx
This requires partial fractions. Let's focus on the left side first:
1/[y(3y + 2x)] = A/y + B/(3y + 2x)
Solving for A and B, we get A = 1/(2x) and B = -3/(2x).
Now we can integrate:
∫ (1/(2x)) (1/y) dy - ∫ (3/(2x)) (1/(3y + 2x)) dy = ∫ (1/[x(2y + x)]) dx
4. **Integrate the terms:**
(1/(2x)) ln|y| - (3/(2x)) (1/3) ln|3y + 2x| = ∫ (1/[x(2y + x)]) dx
5. **Simplify and integrate the right side:**
(1/(2x)) ln|y| - (1/(2x)) ln|3y + 2x| = ∫ (1/[x(2y + x)]) dx
The right side also requires partial fractions:
1/[x(2y + x)] = C/x + D/(2y + x)
Solving for C and D, we get C = 1/(2y) and D = -1/(2y).
Now we can integrate:
(1/(2x)) ln|y| - (1/(2x)) ln|3y + 2x| = (1/(2y)) ln|x| - (1/(2y)) ln|2y + x| + K (where K is the constant of integration)
6. **Combine terms:**
(1/(2x)) ln|y/(3y + 2x)| = (1/(2y)) ln|x/(2y + x)| + K
7. **Solve for y (optional):**
This equation implicitly defines y as a function of x. It's difficult to explicitly solve for y. However, you can leave the solution in this implicit form.
**Final implicit solution:**
(1/(2x)) ln|y/(3y + 2x)| = (1/(2y)) ln|x/(2y + x)| + K